Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 848
Filtrar
1.
Journal of Zhejiang University. Medical sciences ; (6): 750-757, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971092

RESUMEN

Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) is a key factor in pulmonary vascular remodeling. Inhibiting or reversing phenotypic transformation can inhibit pulmonary vascular remodeling and control the progression of hypoxic pulmonary hypertension. Recent studies have shown that hypoxia causes intracellular peroxide metabolism to induce oxidative stress, induces multi-pathway signal transduction, including those related to autophagy, endoplasmic reticulum stress and mitochondrial dysfunction, and also induces non-coding RNA regulation of cell marker protein expression, resulting in PASMCs phenotypic transformation. This article reviews recent research progress on mechanisms of hypoxia-induced phenotypic transformation of PASMCs, which may be helpful for finding targets to inhibit phenotypic transformation and to improve pulmonary vascular remodeling diseases such as hypoxia-induced pulmonary hypertension.


Asunto(s)
Humanos , Arteria Pulmonar , Hipertensión Pulmonar , Remodelación Vascular/genética , Hipoxia/genética , Miocitos del Músculo Liso , Proliferación Celular/fisiología , Células Cultivadas , Hipoxia de la Célula/genética
2.
Chinese Critical Care Medicine ; (12): 503-508, 2023.
Artículo en Chino | WPRIM | ID: wpr-982622

RESUMEN

OBJECTIVE@#To explore whether the differentiation of vascular stem cells (VSC) into smooth muscle cells (SMC) in aortic dissection (AD) is dysregulated, and to verify the role of Notch3 pathway in this process.@*METHODS@#Aortic tissues were obtained from AD patients undergoing aortic vascular replacement and heart transplant donors at Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital Affiliated to Southern Medical University. VSC were isolated by enzymatic digestion and c-kit immunomagnetic beads. The cells were divided into normal donor-derived VSC group (Ctrl-VSC group) and AD-derived VSC group (AD-VSC group). The presence of VSC in the aortic adventitia was detected by immunohistochemical staining, and VSC was identified by stem cell function identification kit. The differentiation model of VSC into SMC established in vitro was induced by transforming growth factor-β1 (10 μg/L) for 7 days. They were divided into normal donor VSC-SMC group (Ctrl-VSC-SMC group), AD VSC-SMC group (AD-VSC-SMC group) and AD VSC-SMC+Notch3 inhibitor DAPT group (AD-VSC-SMC+DAPT group,DAPT 20 μmol/L was added during differentiation induction). The expression of contractile marker Calponin 1 (CNN1) in SMC derived from aortic media and VSC were detected by immunofluorescence staining. The protein expressions of contractile markers α-smooth muscle actin (α-SMA), CNN1 as well as Notch3 intracellular domain (NICD3) in SMC derived from aortic media and VSC were detected by Western blotting.@*RESULTS@#Immunohistochemical staining showed there was a population of c-kit-positive VSC in the adventitia of aortic vessels, and VSC from both normal donors and AD patients had the ability to differentiate into adipocytes and chondrocytes. Compared with normal donor vascular tissue, the expressions of SMC markers α-SMA and CNN1 of tunica media contraction in AD were down-regulated (α-SMA/β-actin: 0.40±0.12 vs. 1.00±0.11, CNN1/β-actin: 0.78±0.07 vs. 1.00±0.14, both P < 0.05), while the protein expression of NICD3 was up-regulated (NICD3/GAPDH: 2.22±0.57 vs. 1.00±0.15, P < 0.05). Compared with Ctrl-VSC-SMC group, the expressions of contractile SMC markers α-SMA and CNN1 were down-regulated in AD-VSC-SMC group (α-SMA/β-actin: 0.35±0.13 vs. 1.00±0.20, CNN1/β-actin: 0.78±0.06 vs. 1.00±0.07, both P < 0.05), the protein expression of NICD3 was up-regulated (NICD3/GAPDH: 22.32±1.22 vs. 1.00±0.06, P < 0.01). Compared with AD-VSC-SMC group, the expressions of contractile SMC markers α-SMA, CNN1 were up-regulated in AD-VSC-SMC+DAPT group (α-SMA/β-actin: 1.70±0.07 vs. 1.00±0.15, CNN1/β-actin: 1.62±0.03 vs. 1.00±0.02, both P < 0.05).@*CONCLUSIONS@#Dysregulation of VSC differentiation into SMC occurs in AD, while inhibition of Notch3 pathway activation can restore the expression of contractile proteins in VSC-derived SMC in AD.


Asunto(s)
Humanos , Actinas , Inhibidores de Agregación Plaquetaria , Transducción de Señal , Disección Aórtica , Diferenciación Celular , Miocitos del Músculo Liso , Células Madre
3.
International Journal of Oral Science ; (4): 26-26, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982483

RESUMEN

Periodontitis imparting the increased risk of atherosclerotic cardiovascular diseases is partially due to the immune subversion of the oral pathogen, particularly the Porphyromonas gingivalis (P. gingivalis), by inducing apoptosis. However, it remains obscure whether accumulated apoptotic cells in P. gingivalis-accelerated plaque formation are associated with impaired macrophage clearance. Here, we show that smooth muscle cells (SMCs) have a greater susceptibility to P. gingivalis-induced apoptosis than endothelial cells through TLR2 pathway activation. Meanwhile, large amounts of miR-143/145 in P.gingivalis-infected SMCs are extracellularly released and captured by macrophages. Then, these miR-143/145 are translocated into the nucleus to promote Siglec-G transcription, which represses macrophage efferocytosis. By constructing three genetic mouse models, we further confirm the in vivo roles of TLR2 and miR-143/145 in P. gingivalis-accelerated atherosclerosis. Therapeutically, we develop P.gingivalis-pretreated macrophage membranes to coat metronidazole and anti-Siglec-G antibodies for treating atherosclerosis and periodontitis simultaneously. Our findings extend the knowledge of the mechanism and therapeutic strategy in oral pathogen-associated systemic diseases.


Asunto(s)
Animales , Ratones , Células Endoteliales , Receptor Toll-Like 2 , Macrófagos , Apoptosis , Aterosclerosis , Miocitos del Músculo Liso , MicroARNs
4.
Chinese Journal of Contemporary Pediatrics ; (12): 407-414, 2023.
Artículo en Chino | WPRIM | ID: wpr-981971

RESUMEN

OBJECTIVES@#To study the effect of platelet-derived growth factor-BB (PDGF-BB) on pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension (HPH).@*METHODS@#A total of 128 neonatal rats were randomly divided into four groups: PDGF-BB+HPH, HPH, PDGF-BB+normal oxygen, and normal oxygen (n=32 each). The rats in the PDGF-BB+HPH and PDGF-BB+normal oxygen groups were given an injection of 13 μL 6×1010 PFU/mL adenovirus with PDGF-BB genevia the caudal vein. After 24 hours of adenovirus transfection, the rats in the HPH and PDGF-BB+HPH groups were used to establish a neonatal rat model of HPH. Right ventricular systolic pressure (RVSP) was measured on days 3, 7, 14, and 21 of hypoxia. Hematoxylin-eosin staining was used to observe pulmonary vascular morphological changes under an optical microscope, and vascular remodeling parameters (MA% and MT%) were also measured. Immunohistochemistry was used to measure the expression levels of PDGF-BB and proliferating cell nuclear antigen (PCNA) in lung tissue.@*RESULTS@#The rats in the PDGF-BB+HPH and HPH groups had a significantly higher RVSP than those of the same age in the normal oxygen group at each time point (P<0.05). The rats in the PDGF-BB+HPH group showed vascular remodeling on day 3 of hypoxia, while those in the HPH showed vascular remodeling on day 7 of hypoxia. On day 3 of hypoxia, the PDGF-BB+HPH group had significantly higher MA% and MT% than the HPH, PDGF-BB+normal oxygen, and normal oxygen groups (P<0.05). On days 7, 14, and 21 of hypoxia, the PDGF-BB+HPH and HPH groups had significantly higher MA% and MT% than the PDGF-BB+normal oxygen and normal oxygen groups (P<0.05). The PDGF-BB+HPH and HPH groups had significantly higher expression levels of PDGF-BB and PCNA than the normal oxygen group at all time points (P<0.05). On days 3, 7, and 14 of hypoxia, the PDGF-BB+HPH group had significantly higher expression levels of PDGF-BB and PCNA than the HPH group (P<0.05), while the PDGF-BB+normal oxygen group had significantly higher expression levels of PDGF-BB and PCNA than the normal oxygen group (P<0.05).@*CONCLUSIONS@#Exogenous administration of PDGF-BB in neonatal rats with HPH may upregulate the expression of PCNA, promote pulmonary vascular remodeling, and increase pulmonary artery pressure.


Asunto(s)
Ratas , Animales , Hipertensión Pulmonar , Becaplermina , Animales Recién Nacidos , Antígeno Nuclear de Célula en Proliferación , Remodelación Vascular , Arteria Pulmonar/metabolismo , Hipoxia , Oxígeno , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
5.
Int. j. morphol ; 40(3): 760-767, jun. 2022. ilus
Artículo en Inglés | LILACS | ID: biblio-1385669

RESUMEN

SUMMARY: Atherosclerosis is a complex disease whose pathogenesis includes endothelial activation, accumulation of lipids in the subendothelium, formation of foam cells, fat bands and formation of atherosclerotic plaque. These complex mechanisms involve different cell populations in the intimate sub-endothelium, and the S-100 protein family plays a role in a number of extracellular and intracellular processes during the development of atherosclerotic lesions. The aim of this study was to determine the phenotypic characteristics of smooth muscle cells and the consequent expression of S100 protein in atherosclerotic altered coronary arteries in advanced stages of atherosclerosis. 19 samples of right atherosclerotic coronary arteries in stages of fibro atheroma (type V lesion) and complicated lesions (type VI lesion) have been analyzed. According to the standard protocol, the following primary antibodies have been used in the immunohistochemical analysis: a-smooth muscle actin (α-SMA), vimentin and S-100 protein. All analyzed samples have been in advanced stages of atherosclerosis, fibro atheroma (stage V lesions) and complicated lesions (type VI lesions). Most of them have had the structure of a complicated lesion with atheroma or fibro atheroma as a basis, subsequently complicated by disruption (subtype VI a), hemorrhage (subtype VI b) or thrombosis (subtype VI c), as well as by the presence of several complications on the same sample. Marked hypocellularity is present in the subendothelium of plaques. Cell population at plaque margins is characterized by immunoreactivity to α-SMA, vimentin, and S100 protein. Some of these cells accumulate lipids and look like foam cells. In the cell population at the margins of the plaques, smooth muscle cells of the synthetic phenotype are present, some of which accumulate lipids and demonstrate S100 immunoreactivity. Summarizing numerous literature data and our results, we could assume that smooth muscle cells, due to their synthetic and proliferative activity in the earlier stages of pathogenesis, as well as the consequent expression of S100 protein, could accumulate lipids in the earlier stages of atherosclerosis which, in advanced stages analyzed in this study, result in immunoreactivity of foam cells of smooth muscle origin to S100 protein.


RESUMEN: La aterosclerosis es una enfermedad compleja cuya patogenia incluye activación endotelial, acumulación de lípidos en el subendotelio, formación de células espumosas, bandas grasas y formación de placa aterosclerótica. Estos complejos mecanismos involucran diferentes poblaciones celulares en el subendotelio íntimo, y la familia de proteínas S-100 juega un papel en varios procesos extracelulares e intracelulares durante el desarrollo de lesiones ateroscleróticas. El objetivo de este estudio fue determinar las características fenotípicas de las células de músculo liso y la consecuente expresión de la proteína S100 en arterias coronarias alteradas ateroscleróticas en estadios avanzados de aterosclerosis. Se analizaron 19 muestras de arterias coronarias ateroscleróticas derechas en estadios de fibroateroma (lesión tipo V) y lesiones complicadas (lesión tipo VI). Según el protocolo estándar, en el análisis inmunohistoquímico se utilizaron los siguientes anticuerpos primarios: α-actina de músculo liso (α-SMA), vimentina y proteína S-100. Todas las muestras analizadas han estado en estadios avanzados de aterosclerosis, fibroateroma (lesiones estadio V) y lesiones complicadas (lesiones tipo VI). La mayoría de ellos han tenido la estructura de una lesión complicada con ateroma o fibroateroma como base, complicada posteriormente por disrupción (subtipo VI a), hemorragia (subtipo VI b) o trombosis (subtipo VI c), así como por la presencia de varias complicaciones en la misma muestra. La hipocelularidad marcada estaba presente en el subendotelio de las placas. La población celular en los márgenes de la placa se caracterizaba por inmunorreactividad a α-SMA, vimentina y proteína S100. Algunas de estas células acumulan lípidos y parecen células espumosas. En la población celular en los márgenes de las placas, estaban presentes las células de músculo liso de fenotipo sintético, algunas de las cuales acumulaban lípidos y mostraban inmunorreactividad S100. Resumiendo numerosos datos de la literatura y nuestros resultados, podríamos suponer que las células del músculo liso, debido a su actividad sintética y proliferativa en las primeras etapas de la patogénesis, así como la consecuente expresión de la proteína S100, podrían acumular lípidos en las primeras etapas de la aterosclerosis que, en estadios avanzados analizados en este estudio, dan como resultado inmunorreactividad de células espumosas de origen muscular liso a la proteína S100.


Asunto(s)
Humanos , Enfermedad de la Arteria Coronaria/metabolismo , Proteínas S100/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo
6.
Acta Physiologica Sinica ; (6): 949-958, 2022.
Artículo en Chino | WPRIM | ID: wpr-970090

RESUMEN

Tanshinone IIa is a key ingredient extracted from the traditional Chinese medicine Salvia miltiorrhiza (Danshen), and is widely used to treat various cardiovascular diseases. Vascular calcification is a common pathological change of cardiovascular tissues in patients with chronic kidney disease, diabetes, hypertension and atherosclerosis. However, whether Tanshinone IIa inhibits vascular calcification and the underlying mechanisms remain largely unknown. This study aims to investigate whether Tanshinone IIa can inhibit vascular calcification using high phosphate-induced vascular smooth muscle cell and aortic ring calcification model, and high dose vitamin D3 (vD3)-induced mouse models of vascular calcification. Alizarin red staining and calcium quantitative assay showed that Tanshinone IIa significantly inhibited high phosphate-induced vascular smooth muscle cell and aortic ring calcification. qPCR and Western blot showed that Tanshinone IIa attenuated the osteogenic transition of vascular smooth muscle cells. In addition, Tanshinone IIa also significantly inhibited high dose vD3-induced mouse aortic calcification and aortic osteogenic transition. Mechanistically, Tanshinone IIa inhibited the activation of NF-κB and β-catenin signaling in normal vascular smooth muscle cells. Similar to Tanshinone IIa, inhibition of NF-κB and β-catenin signaling using the chemical inhibitors SC75741 and LF3 attenuated high phosphate-induced vascular smooth muscle cell calcification. These results suggest that Tanshinone IIa attenuates vascular calcification at least in part through inhibition of NF-κB and β-catenin signaling, and Tanshinone IIa may be a potential drug for the treatment of vascular calcification.


Asunto(s)
Animales , Ratones , FN-kappa B/metabolismo , beta Catenina/metabolismo , Transducción de Señal , Miocitos del Músculo Liso/metabolismo , Calcificación Vascular/metabolismo , Fosfatos/metabolismo
7.
Acta Physiologica Sinica ; (6): 939-948, 2022.
Artículo en Chino | WPRIM | ID: wpr-970089

RESUMEN

Vascular calcification is an important pathophysiological basis of cardiovascular disease with its underlying mechanism unclear. In recent years, studies have shown that aging is one of the risk factors for vascular calcification. The purpose of this study was to investigate the microenvironmental characteristics of vascular calcification, identify aging/senescence-induced genes (ASIGs) closely related to calcified plaques, and explore the evolution trajectory of vascular calcification cell subsets. Based on the bioinformatics method, the single cell transcriptome sequencing data (Gene Expression Omnibus: GSE159677) of carotid artery samples from 3 patients undergoing carotid endarterectomy were grouped and annotated. Vascular calcification-related aging genes were identified by ASIGs data set. The pseudotime trend of ASIGs in cell subsets was analyzed by Monocle 3, and the evolution of vascular calcification cells was revealed. After quality control, all cells were divided into 8 cell types, including B cells, T cells, smooth muscle cells, macrophages, endothelial cells, fibroblasts, mast cells, and progenitor cells. Ten ASIGs related to vascular calcification were screened from the data set of ASIGs, which include genes encoding complement C1qA (C1QA), superoxide dismutase 3 (SOD3), lysozyme (LYZ), insulin-like growth factor binding protein-7 (IGFBP7), complement C1qB (C1QB), complement C1qC (C1QC), Caveolin 1 (CAV1), von Willebrand factor (vWF), clusterin (CLU), and αB-crystallin (CRYAB). Pseudotime analysis showed that all cell subsets were involved in the progression of vascular calcification, and these ASIGs may play an important role in cell evolution. In summary, AGIS plays an important role in the progression of vascular calcification, and these high expression genes may provide ideas for early diagnosis and treatment of vascular calcification.


Asunto(s)
Humanos , Células Endoteliales , Músculo Liso Vascular , Envejecimiento , Calcificación Vascular/metabolismo , Biología Computacional , Miocitos del Músculo Liso/metabolismo
8.
Acta Physiologica Sinica ; (6): 927-938, 2022.
Artículo en Chino | WPRIM | ID: wpr-970088

RESUMEN

Chronic psychological stress can promote vascular diseases, such as hypertension and atherosclerosis. This study aims to explore the effects and mechanism of chronic psychological stress on aortic medial calcification (AMC). Rat arterial calcification model was established by nicotine gavage in combination with vitamin D3 (VitD3) intramuscular injection, and rat model of chronic psychological stress was induced by humid environment. Aortic calcification in rats was evaluated by using Alizarin red staining, aortic calcium content detection, and alkaline phosphatase (ALP) activity assay. The expression levels of the related proteins, including vascular smooth muscle cells (VSMCs) contractile phenotype marker SM22α, osteoblast-like phenotype marker RUNX2, and endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP), were determined by Western blot. The results showed that chronic psychological stress alone induced AMC in rats, further aggravated AMC induced by nicotine in combination with VitD3, promoted the osteoblast-like phenotype transformation of VSMCs and aortic ERS activation, and significantly increased the plasma cortisol levels. The 11β-hydroxylase inhibitor metyrapone effectively reduced chronic psychological stress-induced plasma cortisol levels and ameliorated AMC and aortic ERS in chronic psychological stress model rats. Conversely, the glucocorticoid receptor agonist dexamethasone induced AMC, promoted AMC induced by nicotine combined with VitD3, and further activated aortic ERS. The above effects of dexamethasone could be inhibited by ERS inhibitor 4-phenylbutyrate. These results suggest that chronic psychological stress can lead to the occurrence and development of AMC by promoting glucocorticoid synthesis, which may provide new strategies and targets for the prevention and control of AMC.


Asunto(s)
Ratas , Animales , Glucocorticoides/metabolismo , Ratas Sprague-Dawley , Nicotina/metabolismo , Hidrocortisona/metabolismo , Músculo Liso Vascular , Dexametasona/metabolismo , Calcificación Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
9.
Acta Physiologica Sinica ; (6): 913-926, 2022.
Artículo en Chino | WPRIM | ID: wpr-970087

RESUMEN

Vascular calcification is the crucial factor of high cardiovascular disease morbidity and mortality in patients with chronic kidney disease (CKD), which causes a huge medical and economic burden. It is urgent to explore its pathogenesis and intervention methods. CKD-associated vascular calcification is an ectopic osteogenesis process actively regulated by multiple cells. Vascular smooth muscle cells (VSMCs) undergo osteogenic differentiation in a pro-calcification environment, and secrete matrix vesicles to form calcium and phosphorus crystal deposition sites, which are key events in the development of CKD-associated vascular calcification. This article reviews the new mechanism and technology of CKD-associated vascular calcification and discusses the role of the myokine Irisin in CKD-associated vascular calcification.


Asunto(s)
Humanos , Osteogénesis , Insuficiencia Renal Crónica , Calcificación Vascular/patología , Proteínas , Enfermedades Cardiovasculares/complicaciones , Progresión de la Enfermedad , Miocitos del Músculo Liso
10.
Acta Physiologica Sinica ; (6): 885-893, 2022.
Artículo en Chino | WPRIM | ID: wpr-970084

RESUMEN

Vascular calcification, the deposition of calcium in the arterial wall, is often linked to increased stiffness of the vascular wall. Vascular calcification is one of the important factors for high morbidity and mortality of cardiovascular and cerebrovascular diseases, as well as an important biomarker in atherosclerotic cardiovascular events, stroke and peripheral vascular diseases. The mechanism of vascular calcification has not been fully elucidated. Recently, non-coding RNAs have been found to play an important role in the process of vascular calcification. In this paper, the main types of non-coding RNAs and their roles involved in vascular smooth muscle cell calcification are reviewed, including the changes of osteoblast-related proteins, calcification signaling pathways and intracellular Ca2+.


Asunto(s)
Humanos , Músculo Liso Vascular/metabolismo , Calcificación Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
11.
Acta Physiologica Sinica ; (6): 859-884, 2022.
Artículo en Chino | WPRIM | ID: wpr-970083

RESUMEN

Vascular calcification is an active and complex pathological process regulated by several factors. Vascular calcification is closely related to the incidence and mortality of the cardiovascular disease, chronic kidney disease and other diseases, which affects multiple organs and systems, thus affecting people's health. Therefore, more and more attention is paid to vascular calcification. At present, the pathogenesis and clinical practice of vascular calcification have been continuously improved, which mainly includes calcium and phosphorus imbalance theory, vascular smooth muscle cell transdifferentiation theory, bone homeostasis imbalance theory, epigenetic regulation theory, inflammation theory, extracellular matrix theory, new cell fate theory and so on. However, there are still many unsolved problems. Since the occurrence and development of vascular calcification affect multiple organs and systems, this expert consensus gathered clinicians and basic research experts engaged in the study of vascular calcification in order to summarize the progress of various disciplines related to vascular calcification in recent years. The purpose of this consensus is to systematically summarize the latest research progress, treatment consensus and controversy of vascular calcification from the aspects of epidemiology, pathogenesis, prevention and treatment, so as to provide theoretical basis and clinical enlightenment for in-depth research in this field.


Asunto(s)
Humanos , Consenso , Epigénesis Genética , Calcificación Vascular/patología , Enfermedades Cardiovasculares , Miocitos del Músculo Liso
12.
Chinese journal of integrative medicine ; (12): 785-793, 2022.
Artículo en Inglés | WPRIM | ID: wpr-939798

RESUMEN

OBJECTIVE@#To investigate the regulatory roles of Shexiang Baoxin Pill (SXBXW) in neointimal formation and vascular smooth muscle cells (VSMCs) invasion and apoptosis as well as the potential molecular mechanisms using cultured VSMCs model of vascular injury (platelet-derived growth factor (PDGF)-BB-stimulated) in vitro.@*METHODS@#VSMCs were randomly assigned to 5 groups: blank, PDGF-BB (20 ng/mL+ 0.1% DMSO), SXBXW-L (PDGF-BB 20 ng/mL + SXBXW low dose 0.625 g/L), SXBXW-M (PDGF-BB 20 ng/mL + SXBXW medium dose 1.25 g/L) and SXBXW-H (PDGF-BB 20 ng/mL+ SXBXW high dose 2.5 g/L) group. Cell proliferation was assessed using cell counting kit-8 (CCK-8) assay and bromodeoxyuridine (BrdU) incorporation assay, the migration effects were detected by Transwell assay, cell apoptosis rate was measured by the Annexin V/propidium iodide (PI) apoptosis kit. The markers of contractile phenotype of VSMCs were detected with immunofluorescent staining. To validate the effects of miR-451 in regulating proliferation, migration and apoptosis treated with SXBXW, miR-451 overexpression experiments were performed, the VSMCs were exposed to PDGF-BB 20 ng/mL + 0.1% DMSO and later divided into 4 groups: mimic-NC (multiplicity of infection, MOI=50), SXBXW (1.25 g/L) + mimic-NC, mimic-miR451 (MOI=50), and SXBXW (1.25 g/L) + mimic-miR451, and alterations of proteins related to the miR-451 pathway were analyzed using Western blot.@*RESULTS@#PDGF-BB induced VSMCs injury causes acceleration of proliferation and migration. SXBXW inhibited phenotypic switching, proliferation and migration and promoted cell apoptosis in PDGF-BB-induced VSMCs. In addition, miR-451 was shown to be down-regulated in the VSMCs following PDGF-BB stimulation. SXBXW treatment enhanced the expression of miR-451 in PDGF-BB-induced VSMCs (P<0.05). Compared with SXBXW + mimic-NC and mimic-miR451 groups, the expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and p53 was further reduced in SXBXW + mimic-miR451 group, while activating transcription factor 2 (ATF2) was increased in VSMCs (P<0.05).@*CONCLUSION@#SXBXW regulated proliferation, migration and apoptosis via activation of miR-451 through ATF2, p53 and Ywhaz in PDGF-BB-stimulated VSMCs.


Asunto(s)
Humanos , Apoptosis , Becaplermina/farmacología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Dimetilsulfóxido/farmacología , Medicamentos Herbarios Chinos , Hiperplasia/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteína p53 Supresora de Tumor/metabolismo
13.
Journal of Southern Medical University ; (12): 330-337, 2022.
Artículo en Chino | WPRIM | ID: wpr-936320

RESUMEN

OBJECTIVE@#To investigate the effects of Bax inhibitor 1 (BI- 1) and optic atrophy protein 1 (OPA1) on vascular calcification (VC).@*METHODS@#Mouse models of VC were established in ApoE-deficient (ApoE-/-) diabetic mice by high-fat diet feeding for 12 weeks followed by intraperitoneal injections with Nε-carboxymethyl-lysine for 16 weeks. ApoE-/- mice (control group), ApoE-/- diabetic mice (VC group), ApoE-/- diabetic mice with BI-1 overexpression (VC + BI-1TG group), and ApoE-/- diabetic mice with BI-1 overexpression and OPA1 knockout (VC+BI-1TG+OPA1-/- group) were obtained for examination of the degree of aortic calcification using von Kossa staining. The changes in calcium content in the aorta were analyzed using ELISA. The expressions of Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP-2) were detected using immunohistochemistry, and the expression of cleaved caspase-3 was determined using Western blotting. Cultured mouse aortic smooth muscle cells were treated with 10 mmol/L β-glycerophosphate for 14 days to induce calcification, and the changes in BI-1 and OPA1 protein expressions were examined using Western blotting and cell apoptosis was detected using TUNEL staining.@*RESULTS@#ApoE-/- mice with VC showed significantly decreased expressions of BI-1 and OPA1 proteins in the aorta (P=0.0044) with obviously increased calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 (P= 0.0041). Overexpression of BI-1 significantly promoted OPA1 protein expression and reduced calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 (P=0.0006). OPA1 knockdown significantly increased calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 in the aorta (P=0.0007).@*CONCLUSION@#BI-1 inhibits VC possibly by promoting the expression of OPA1, reducing calcium deposition and inhibiting osteogenic differentiation and apoptosis of the vascular smooth muscle cells.


Asunto(s)
Animales , Ratones , Apolipoproteínas E/metabolismo , Calcio/metabolismo , Caspasa 3/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Diabetes Mellitus Experimental/patología , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Atrofia Óptica Autosómica Dominante/patología , Osteogénesis , Calcificación Vascular/patología , Proteína X Asociada a bcl-2/metabolismo
14.
China Journal of Chinese Materia Medica ; (24): 1024-1030, 2022.
Artículo en Chino | WPRIM | ID: wpr-928022

RESUMEN

This study investigated the effect of salidroside on phenotypic transformation of rat pulmonary artery smooth muscle cells(PASMCs) induced by hypoxia. Rat pulmonary arteries were isolated by tissue digestion and PASMCs were cultured. The OD values of cells treated with salidroside at different concentrations for 48 hours were measured by cell counting kit-8(CCK-8) to determine the appropriate concentration range of salidroside. The cells were divided into a normal(normoxia) group, a model(hypoxia) group, and three hypoxia + salidroside groups(40, 60, and 80 μg·mL~(-1)). Quantitative real-time PCR(qRT-PCR) was used to detect the mRNA expression of cell contractile markers in each group, such as α-smooth muscle actin(α-SMA), smooth muscle 22(SM22), and calcium-binding protein(calponin), and synthetic marker vimentin. The expression levels of cell phenotypic markers and proliferating cell nuclear antigen(PCNA) were detected by Western blot. The proliferation of cells in each group was detected by the 5-ethynyl-2'-deoxyuridine(EdU) assay. Cell migration was measured by Transwell assay. As revealed by results, compared with the normal group, the model group showed decreased mRNA and protein expression of contractile phenotypic markers of PASMCs and increased mRNA and protein expression of synthetic markers. Compared with the conditions in the model group, salidroside could down-regulate the mRNA and protein expression of synthetic markers in PASMCs and up-regulated the mRNA and protein expression of contractile phenotypic markers. Compared with the normal group, the model group showed potentiated proliferation and migration. Compared with the model group, the hypoxia + salidroside groups showed blunted proliferation and migration of cells after phenotypic transformation. The results suggest that salidroside can inhibit the expression of synthetic markers in PASMCs and promote the expression of contractile markers to inhibit the hypoxia-induced phenotypic transformation of PASMCs. The mechanism of salidroside in inhibiting the proliferation and migration of PASMCs is related to the inhibition of the phenotypic transformation of PASMCs.


Asunto(s)
Animales , Ratas , Proliferación Celular , Células Cultivadas , Glucósidos , Hipoxia , Miocitos del Músculo Liso , Fenoles , Arteria Pulmonar
15.
Rev. chil. cardiol ; 40(3): 203-2010, dic. 2021. ilus
Artículo en Español | LILACS | ID: biblio-1388097

RESUMEN

Resumen: Introducción: Las células de la musculatura lisa vascular (CMLV) se caracterizan por mantener cierto grado de desdiferenciación, variando su fenotipo entre el contráctil y el secretor, de acuerdo con las necesidades del tejido, y el contráctil predominante en condiciones fisiológicas. Cualquier alteración del estímulo mecánico, ya sea en el flujo sanguíneo o la tensión mecánica ejercida sobre las CMLV, conducen a cambios de su fenotipo y remodelamiento de la vasculatura, lo que puede constituir el punto de inflexión de varias patologías relevantes en la salud pública como, por ejemplo, la hipertensión arterial. Objetivo: Realizar una revisión sobre los mecanosensores y las vías transduccionales conocidas e implicadas en el cambio de fenotipo de las CMLV. Metodología: Se realizó una búsqueda sistemática en las bases de datos PubMed, Scopus, Google Académico y Scielo sobre la mantención y cambio de fenotipo de las células de la musculatura lisa vascular asociado principalmente a el estrés mecánico, la participación de los mecanosensores más relevantes y las vías de señalización involucrados en este proceso. Conclusión: Los mecanosensores implicados en el cambio de fenotipo de las CMLV contemplan principalmente receptores acoplados a proteína G, moléculas de adhesión y canales iónicos activados por estiramiento. Los estudios se han concentrado en la activación o inhibición de vías como las proteínas quinasas activadas por mitógenos (MAPK), la vía AKT, mTOR y factores transcripcionales que regulan la expresión de genes de diferenciación y/o desdiferenciación, como las miocardinas. Existen además otros receptores involucrados en la respuesta al estrés mecánico, como los receptores tirosina quinasas. A pesar de la importancia que reviste el conocimiento de los mecanosensores y las vías implicadas en el cambio de fenotipo de las CMLV, así como el papel que cumplen en el establecimiento de patologías vasculares, es aún escaso el conocimiento que se tiene sobre los mismos.


Abstract: Introduction: Vascular smooth muscle cells (VS- MCs) are characterized by maintaining a certain de- gree of dedifferentiation. VSMCs may vary their phenotype between contractile and secretory according to tissue needs. Under physiological conditions, the predominant phenotype is contractile. Any alteration of the mechanical stimulus, either in the blood flow or the mechanical stress exerted on the VSMCs, leads to changes in their phenotype and remodeling of the vasculature. These changes can constitute the turning point in several hypertension and other diseases relevant in public health. Objective: To review the main mechanosensor and transduction pathways involved changes in VSMCs phenotype. Methods: A systematic search of PubMed, Scopus, Google Scholar and Scielo databases was carried out to ascertain the state of the art regarding the maintenance and change of VSMCs phenotype mainly associated with mechanical stress. Additionally, the participation of the most relevant mechanosensors and the signaling pathways involved in this process are discussed. Conclusion: The mechanosensors involved in the change in VSMCs phenotype mainly contempla- te G-protein-coupled receptors, adhesion molecules, and stretch-activated ion channels. Studies have been focused on the activation or inhibition of MAPK, AKT, mTOR, pathways and transcriptional factors that regulate the expression of differentiation and/or des differentiation genes such as Myocardins. There are also other receptors involved in the response to mechanical stress such as the tyrosine kinases receptor. Although the importance of understanding mechanosensors, the signaling pathways involved in VSMC phenotype switching and their role in the establishment of vascular pathologies, knowledge about them is limited.


Asunto(s)
Humanos , Estrés Mecánico , Miocitos del Músculo Liso/fisiología , Mecanotransducción Celular , Músculo Liso Vascular/fisiología , Fenotipo
16.
Braz. j. med. biol. res ; 54(8): e10807, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1249324

RESUMEN

Smooth muscle cells (SMCs) are currently considered a central pivotal player in pathogenesis and development of atherosclerotic lesions. As consequence of vascular injury, SMCs migrate from the tunica media into the tunica intima layers where they contribute to neointimal formation by converting into foam cells and producing pro-inflammatory and oxidative stress markers. We targeted the replacement of neointimal SMCs by using the mesenchymal stem cells (MSCs) therapy in experimentally induced atherosclerosis in an attempt to improve the atherosclerotic lesion and its concomitant complications. Rats were divided into 4 groups (n=20). Control group: rats kept on a standard chow diet; atherosclerotic group: rats received the atherogenic diet; stem cells-treated group: rats were injected with CD34+ stem cells (6×106 cells in 0.5 mL PBS in rat tail vein) and maintained on the atherogenic diet; and resveratrol-treated group: rats were supplemented orally with resveratrol at a dose level 3 mg/kg per day and the atherogenic diet. After 12 weeks, rats were euthanized, blood samples were collected for separation of serum, and abdominal aortas were excised for further biochemical, molecular, and histopathological investigations. We used resveratrol, the well-established anti-atherosclerotic drug, as a benchmark to assess the efficacy of stem cell therapy. MSCs treatment revealed significant amelioration in both histopathological and biochemical patterns as evidenced by decreased foam cells formation, ICAM-1, VCAM, M-CSF, iNOS, COX-2, and TNF-α. We concluded that MSCs therapy significantly replaced the neointimal SMCs and decreased adhesion molecules as well as the oxidative and inflammatory markers in atherosclerosis.


Asunto(s)
Animales , Ratas , Molécula 1 de Adhesión Celular Vascular , Aterosclerosis/terapia , Adhesión Celular , Molécula 1 de Adhesión Intercelular , Miocitos del Músculo Liso , Tratamiento Basado en Trasplante de Células y Tejidos
17.
Journal of Zhejiang University. Medical sciences ; (6): 390-395, 2021.
Artículo en Inglés | WPRIM | ID: wpr-888500

RESUMEN

Atherosclerosis is a common pathological change in cardiovascular disease. Vascular smooth muscle cell is the main source of plaque cell and extracellular matrix, and nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating the function of vascular smooth muscle cell. In the process of atherosclerosis, Nrf2 signaling pathway has the following regulatory effects on vascular smooth muscle cell: regulating the phenotype of vascular smooth muscle cell to change to the direction conducive to the alleviation of disease progression; inhibiting the proliferation and migration of vascular smooth muscle cell; mitigating the level of blood lipid; alleviating vascular smooth muscle cell calcification, aging and apoptosis process. This article reviews the specific mechanisms of Nrf2 regulating atherosclerosis, such as phenotypic transformation, proliferation and migration, lipid metabolism, calcification, aging and apoptosis in atherosclerosis, in order to provide a basis for understanding the molecular mechanism of atherosclerosis development and finding therapeutic targets.


Asunto(s)
Humanos , Aterosclerosis , Movimiento Celular , Proliferación Celular , Células Cultivadas , Músculo Liso Vascular , Miocitos del Músculo Liso , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal
18.
China Journal of Chinese Materia Medica ; (24): 4497-4503, 2021.
Artículo en Chino | WPRIM | ID: wpr-888151

RESUMEN

This study aimed to observe the inhibitory effect of icariin against oxidative stress-induced calcification in aortic vascular smooth muscle cells(VSMCs) and elucidate the molecular mechanism of icariin in inhibiting endoplasmic reticulum stress(ERS)-mediated atherosclerotic calcification, so as to provide new ideas for exploring the anti-atherosclerotic mechanism of Epimedii Folium. The VSMCs in rat thoracic aorta were subjected to adherent culture and then treated with the complete calcification DMEM containing high glucose and hydrogen peroxide(H_2O_2) for three weeks. The resulting calcified VSMCs were divided into different treatment groups. Icariin was added one week after calcification induction for protecting the VSMCs, whose viability was then detected using cell counting kit-8(CCK-8). Alizarin red-S staining was conducted to observe the calcification degree. The activity of alkaline phosphatase(ALP) in VSMCs was measured using the disodium phenyl phosphate substrate and the calcium content was measured by arsenazo Ⅲ method. The mRNA expression levels of ossification-related factors including osteocalcin(OC), osteopontin(OPN), Runt-related transcription factor 2(Runx2), and type Ⅰ collagen(Col Ⅰa) were detected by real-time PCR. Western blot was carried out to determine the protein expression levels of α-smooth muscle actin(α-SMA), Runx2, activating transcription factor 4(ATF4), and eukaryotic translation initiation factor(eIF)-2α. The results showed that H_2O_2 significantly induced the calcification of VSMCs, increased the ALP activity and calcium content in VSMCs, promoted OC, OPN, Runx2, and Col Ⅰa mRNA expression and Runx2 protein expression, and reduced α-SMA protein expression. The ATF4 protein expression and eIF2α phosphorylation were also elevated significantly. Icariin reversed the calcification of VSMCs induced by H_2O_2, inhibited ALP activity and calcium content in VSMCs, down-regulated the mRNA expression levels of OC, OPN, Runx2 and Col Ⅰa and Runx2 protein expression, and relatively up-regulated the expression of α-SMA. The expression of ATF4 and phosphorylation of eIF2α also declined significantly. All these have demonstrated that icariin inhibited VSMCs calcification by down-regulating the ossification-related factors and lowering ALP activity and calcium content in VSMCs. Besides, the down-regulation of Runx2 expression and the inhibition of ATF4 and eIF2α-mediated cellular calcification pathway in ERS might also be involved in such calcification-suppressing process.


Asunto(s)
Animales , Ratas , Células Cultivadas , Flavonoides/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso , Estrés Oxidativo
19.
Acta Physiologica Sinica ; (6): 646-656, 2021.
Artículo en Chino | WPRIM | ID: wpr-887699

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare disease with a complex aetiology characterized by elevated pulmonary artery resistance, which leads to progressive right ventricular failure and ultimately death. The aberrant metabolism of arachidonic acid in the pulmonary vasculature plays a central role in the pathogenesis of PAH. The levels of 15-lipoxygenase (15-LO) and 15-hydroxyeicosatetraenoic acid (15-HETE) are elevated in the pulmonary arterial endothelial cells (PAECs), pulmonary smooth muscle cells (PASMCs) and fibroblasts of PAH patients. Under hypoxia condition, 15-LO/15-HETE induces pulmonary artery contraction, promotes the proliferation of PAECs and PASMCs, inhibits apoptosis of PASMCs, promotes fibrosis of pulmonary vessels, and then leads to the occurrence of PAH. Here, we review the research progress on the relationship between 15-LO/15-HETE and hypoxic PAH, in order to clarify the significance of 15-LO/15-HETE in hypoxic PAH.


Asunto(s)
Humanos , Araquidonato 15-Lipooxigenasa , Proliferación Celular , Células Cultivadas , Células Endoteliales , Ácidos Hidroxieicosatetraenoicos , Hipoxia , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar , Arteria Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA